Śledzenie stożka
Śledzenie stożkowe i śledzenie wiązki są pochodną algorytmu śledzenia promieni , który zastępuje promienie, które nie mają grubości, promieniami grubymi.
Zasady
W śledzeniu promieni promienie są często modelowane jako promienie geometryczne bez grubości w celu wykonywania wydajnych zapytań geometrycznych, takich jak przecięcie promienia i trójkąta. Z fizyki transportu światła jest to jednak niedokładny model, pod warunkiem, że piksel na płaszczyźnie czujnika ma niezerową powierzchnię.
W uproszczonym modelu optyki kamery otworkowej energia docierająca do piksela pochodzi z całki promieniowania z kąta bryłowego , pod jakim piksel czujnika widzi scenę przez otworek w płaszczyźnie ogniskowej. Daje to kluczowe pojęcie śladu piksela na powierzchniach lub w przestrzeni tekstury , czyli tylnej projekcji piksela na scenę. Należy zauważyć, że to podejście może również reprezentować kamerę opartą na obiektywie, a tym samym głębi ostrości , przy użyciu stożka, którego przekrój zmniejsza się od rozmiaru obiektywu do zera na płaszczyźnie ogniskowej , a następnie zwiększa się.
Prawdziwy układ optyczny nie skupia się na dokładnych punktach ze względu na dyfrakcję i niedoskonałości. Można to modelować za pomocą funkcji rozproszenia punktu (PSF) ważonej w kącie bryłowym większym niż piksel.
Z punktu widzenia przetwarzania sygnału, ignorowanie funkcji rozrzutu punktów i aproksymacja całki luminancji za pomocą pojedynczej, centralnej próbki (poprzez promień bez grubości) może prowadzić do silnego aliasingu , ponieważ „rzutowany sygnał geometryczny” ma bardzo wysokie częstotliwości przekraczające maksymalna częstotliwość Nyquista -Shannona , którą można przedstawić za pomocą jednolitej częstotliwości próbkowania pikseli.
Model tworzenia obrazu oparty na fizyce można przybliżyć za pomocą splotu z funkcją rozproszenia punktów, zakładając, że funkcja jest niezmienna z przesunięciem i liniowa. W praktyce techniki, takie jak wielopróbkowy antyaliasing, szacują ten model oparty na stożku poprzez nadpróbkowanie sygnału, a następnie wykonanie splotu (filtr rekonstrukcji). Rzutowany wstecz ślad stożka na scenę można również wykorzystać do bezpośredniego wstępnego filtrowania geometrii i tekstur sceny.
Należy zauważyć, że wbrew intuicji filtr rekonstrukcyjny nie powinien być śladem piksela (jak sugerowałby model kamery otworkowej), ponieważ filtr pudełkowy ma słabe właściwości widmowe. I odwrotnie, idealna funkcja sinc nie jest praktyczna, ponieważ ma nieskończone wsparcie z prawdopodobnie ujemnymi wartościami, co często tworzy dzwoniące artefakty z powodu zjawiska Gibbsa . Filtr Gaussa lub filtr Lanczosa są uważane za dobre kompromisy.
Modele grafiki komputerowej
Wczesne artykuły Cone and Beam opierają się na różnych uproszczeniach: pierwsza uwzględnia przekrój kołowy i traktuje przecięcie o różnych możliwych kształtach. Drugi traktuje dokładną piramidalną wiązkę przechodzącą przez piksel i wzdłuż złożonej ścieżki, ale działa tylko w przypadku kształtów wielościennych .
Cone tracing rozwiązuje pewne problemy związane z próbkowaniem i aliasingiem, które mogą być plagą konwencjonalnego ray tracingu. Jednak śledzenie stożka stwarza wiele własnych problemów. Na przykład samo przecięcie stożka z geometrią sceny prowadzi do ogromnej różnorodności możliwych wyników. Z tego powodu śledzenie stożków pozostaje w większości niepopularne. W ostatnich latach wzrost szybkości komputerów spowodował, że algorytmy Monte Carlo , takie jak rozproszone śledzenie promieni - tj. stochastyczna jawna integracja piksela - są znacznie częściej stosowane niż śledzenie stożkowe, ponieważ wyniki są dokładne, o ile wykorzysta się wystarczającą liczbę próbek. Jednak konwergencja jest tak powolna, że nawet w kontekście renderowania offline może być wymagana ogromna ilość czasu, aby uniknąć szumu .
Różnicowe śledzenie stożkowe, uwzględniające różnicowe sąsiedztwo kątowe wokół promienia, pozwala uniknąć złożoności dokładnego przecięcia geometrii, ale wymaga reprezentacji LOD geometrii i wyglądu obiektów. MIPmapping jest jego przybliżeniem ograniczonym do integracji tekstury powierzchni w ramach śladu stożka. Różnicowe śledzenie promieni rozszerza je na teksturowane powierzchnie oglądane przez złożone ścieżki stożków odbijanych lub załamywanych przez zakrzywione powierzchnie.
Metody Raymarching nad znakowanymi polami odległości (SDF) w naturalny sposób umożliwiają łatwe korzystanie ze śledzenia stożkowego, bez dodatkowych kosztów śledzenia, a także przyspieszają śledzenie i poprawiają jakość.
Zobacz też
- ^ Amanatydy, Jan (1984). „Ray tracing ze stożkami”. ACM SIGGRAPH Grafika komputerowa . 18 (3): 129. CiteSeerX 10.1.1.129.582 . doi : 10.1145/964965.808589 .
- ^ Matt Pharr, Wenzel Jakob, Greg Humphreys. „Renderowanie oparte na fizyce: od teorii do implementacji - 7.1 Teoria pobierania próbek”. https://www.pbr-book.org/3ed-2018/Sampling_and_Reconstruction/Sampling_Theory
- Bibliografia _ „Eksperymentowanie z filtrami rekonstrukcji dla MSAA Resolve” . https://therealmjp.github.io/posts/msaa-resolve-filters/
- Bibliografia _ „Śledzenie różnic promieni” . http://www.graphics.stanford.edu/papers/trd/