stała Nivena
W teorii liczb stała Nivena , nazwana na cześć Ivana Nivena , jest największym wykładnikiem pojawiającym się w rozkładzie na czynniki pierwsze dowolnej liczby naturalnej n „średnio”. Dokładniej, jeśli zdefiniujemy H (1) = 1 i H ( n ) = największy wykładnik występujący w unikalnym rozkładzie na czynniki pierwsze liczby naturalnej n > 1, to stała Nivena jest dana wzorem
gdzie ζ jest funkcją zeta Riemanna .
W tym samym artykule Niven również to udowodnił
gdzie h (1) = 1, h ( n ) = najmniejszy wykładnik pojawiający się w unikalnym rozkładzie na czynniki pierwsze każdej liczby naturalnej n > 1, o jest notacją małą o , a stała c jest dana wzorem
a co za tym idzie to
Dalsza lektura
- Steven R. Finch, Stałe matematyczne ( Encyklopedia matematyki i jej zastosowań ), Cambridge University Press, 2003
Linki zewnętrzne
Kategorie: