W matematyce stosowanej macierz przenoszenia jest sformułowaniem w postaci macierzy blokowej-Toeplitza równania dwuskalowego, które charakteryzuje funkcje, które można udoskonalić . Funkcje rafinowalne odgrywają ważną rolę w falkowej i teorii elementów skończonych .
Dla maski , jest wektorem z indeksami składowymi od do macierzą przenoszenia , nazywamy ją tutaj jest zdefiniowany jako
Bardziej gadatliwie
Efekt można wyrazić za pomocą operatora próbkowania w dół " ":
Nieruchomości
-
.
- Jeśli usuniesz pierwszą i ostatnią kolumnę i przesuniesz kolumny z indeksami nieparzystymi w lewo, a kolumny z indeksami parzystymi w prawo, otrzymasz transponowaną macierz Sylwestra .
- Wyznacznik macierzy przenoszenia jest zasadniczo wypadkową.
- Dokładniej:
- Niech będą parzystymi indeksowanymi współczynnikami ( ) i niech nieparzystymi indeksowanymi współczynnikami ( .
- Wtedy , gdzie jest wypadkową .
- To połączenie pozwala na szybkie obliczenia z wykorzystaniem algorytmu Euklidesa .
- wyznacznika macierzy przenoszenia złożonej maski zawiera
- gdzie oznacza maskę z naprzemiennymi znakami, tj. .
- T , to .
- Jest to konkrecja powyższej właściwości wyznacznika. wiadomo, że w ilekroć jest . Ta właściwość ∗ h { \ .
- jeśli jest wektorem własnym w odniesieniu do wartości własnej , tj.
-
,
- wtedy jest wektorem własnym w odniesieniu do tej samej wartości własnej, tj.
-
.
- Niech być wartościami własnymi , co implikuje ogólnie . Ta suma jest przydatna do oszacowania promienia widmowego . Istnieje alternatywna możliwość obliczenia sumy potęg wartości własnych, która jest szybsza .
- Niech do będzie periodyzacją w odniesieniu do okresu . To znaczy , co oznacza, że indeksy składowych są reszt w odniesieniu do modułu . z operatorem upsamplingu zachowuje
- Właściwie nie , ale tylko strategii wydajnego obliczania potęg. Co więcej, podejście można jeszcze bardziej przyspieszyć, stosując szybką transformatę Fouriera .
- Z poprzedniego stwierdzenia możemy wyprowadzić oszacowanie promienia widmowego ϱ . Posiada
- gdzie jest rozmiarem filtra i jeśli wszystkie wartości własne są rzeczywiste, prawdą jest również, że
-
,
- gdzie .
Zobacz też