Symetria w mechanice
Symetria w mechanice: łagodne, nowoczesne wprowadzenie to podręcznik dla studentów matematyki i fizyki matematycznej , skupiający się na wykorzystaniu geometrii symplektycznej do rozwiązania problemu Keplera . Został napisany przez Stephanie Singer i opublikowany przez Birkäuser w 2001 roku.
Tematy
Problem Keplera w mechanice klasycznej jest szczególnym przypadkiem problemu dwóch ciał , w którym dwie masy punktowe oddziałują na siebie zgodnie z prawem powszechnego ciążenia Newtona (lub dowolną siłą centralną podlegającą prawu odwrotnych kwadratów ). Książka zaczyna się i kończy tym problemem, po raz pierwszy w sposób ad hoc, który przedstawia problem za pomocą systemu dwunastu zmiennych dla wektorów położenia i pędu dwóch ciał, wykorzystuje prawa zachowania fizyki do stworzenia systemu równania różniczkowe przestrzegane przez te zmienne i rozwiązuje te równania. Za drugim razem opisuje pozycje i zmienne dwóch ciał jako pojedynczy punkt w 12-wymiarowej przestrzeni fazowej , opisuje zachowanie ciał jako układ hamiltonowski i wykorzystuje redukcje symplektyczne , aby zmniejszyć przestrzeń fazową do dwóch wymiarów przed rozwiązaniem go w celu uzyskania praw ruchu planet Keplera w bardziej bezpośredni i pryncypialny sposób.
Środkowa część książki przedstawia maszynerię geometrii symplektycznej potrzebną do ukończenia tej wycieczki. Tematy poruszane w tej części obejmują rozmaitości , pola wektorowe i formy różniczkowe , wypychanie do przodu i wycofywanie , rozmaitości symplektyczne , hamiltonowskie funkcje energii , reprezentację skończonych i nieskończenie małych symetrii fizycznych za pomocą grup Liego i algebr Liego oraz wykorzystanie mapy momentu do powiązać symetrie z wielkościami zachowanymi . Również w tych tematach kluczowe znaczenie mają konkretne przykłady.
Publiczność i odbiór
Książka jest napisana jako podręcznik dla studentów studiów licencjackich z matematyki i fizyki, z wieloma ćwiczeniami i zakłada, że studenci są już zaznajomieni z rachunkiem różniczkowym wielu zmiennych i algebrą liniową , co stanowi znacznie niższy poziom materiału podstawowego niż inne książki dotyczące geometrii symplektycznej w mechanice. Nie jest wyczerpująca pod względem omówienia geometrii i mechaniki symplektycznej, ale może być używana jako lektura pomocnicza w klasie, która obejmuje ten materiał z innych źródeł, takich jak Foundations of Mechanics Abrahama i Marsdena lub Arnold's Metody matematyczne mechaniki klasycznej . Alternatywnie, samodzielnie może zapewnić bardziej przystępny pierwszy kurs z tego materiału, zanim przedstawi go bardziej kompleksowo w innym kursie.
Recenzent William Satzer pisze, że ta książka „podejmuje poważne wysiłki, aby zająć się prawdziwymi uczniami i ich potencjalnymi trudnościami” i wygodnie przełącza się między matematycznymi i fizycznymi poglądami na swój problem. Podobnie recenzent JR Dorfman pisze, że „usuwa niektóre bariery językowe, które dzielą świat matematyki i fizyki”, a recenzent Jiří Vanžura nazywa to „niezwykłym” ze względu na podwójną zdolność motywowania metod matematycznych dla studentów fizyki i dostarczania aplikacji w fizyce dla studentów matematyki, dodając, że „Książka jest doskonale napisana i bardzo dobrze spełnia swoje zadanie”. Recenzent Ivailo Mladenov z aprobatą odnotowuje zwrócenie uwagi w książce na pierwszy przykład i pomimo wskazania na niewielką nieścisłość dotyczącą narodowości Sophus Lie poleca ją zarówno studentom studiów licencjackich, jak i magisterskich. Recenzent Richard Montgomory pisze, że książka „świetnie sobie radzi, prowadząc czytelnika od problemu Keplera do spojrzenia na rozwijającą się dziedzinę geometrii symplektycznej”.