Ludwika Stickelbergera
Ludwig Stickelberger | |
---|---|
Urodzić się | 18 maja 1850 |
Zmarł | 11 kwietnia 1936 |
(w wieku 85)
Narodowość | szwajcarski |
Alma Mater |
Uniwersytet w Heidelbergu Uniwersytet w Berlinie |
Znany z |
Relacja Stickelbergera Twierdzenie Frobeniusa – Stickelbergera |
Kariera naukowa | |
Pola | Matematyka |
Instytucje | Uniwersytet we Fryburgu |
Doradca doktorski | Karola Weierstrassa |
Ludwig Stickelberger (18 maja 1850 - 11 kwietnia 1936) był szwajcarskim matematykiem , który wniósł ważny wkład w algebrę liniową (teorię dzielników elementarnych ) i algebraiczną teorię liczb (relacja Stickelbergera w teorii pól cyklotomicznych ).
Krótki życiorys
Stickelberger urodził się w Buch w kantonie Schaffhausen w rodzinie pastora. Ukończył gimnazjum w 1867 r., następnie studiował na Uniwersytecie w Heidelbergu . W 1874 otrzymał doktorat w Berlinie pod kierunkiem Karla Weierstrassa za pracę nad przekształceniem formy kwadratowej w formę diagonalną. W tym samym roku uzyskał habilitację na Politechnice w Zurychu (obecnie ETH Zurich ). W 1879 został profesorem nadzwyczajnym w katedrze Uniwersytet Alberta Ludwiga we Freiburgu . Od 1896 do 1919 pracował tam jako profesor zwyczajny, a od 1919 do powrotu do Bazylei w 1924 posiadał tytuł wybitnego profesora („ordentlicher Honorarprofessor”). Był żonaty w 1895 r., Ale jego żona i syn zmarli w 1918 r. Stickelberger zmarł 11 kwietnia 1936 r. I został pochowany obok żony i syna we Fryburgu.
Wkłady matematyczne
W nekrologu Stickelbergera wymieniono łącznie 14 publikacji: jego pracę magisterską (po łacinie), 8 kolejnych prac jego autorstwa, które ukazały się za jego życia, 4 prace wspólne z Georgiem Frobeniusem oraz pośmiertnie opublikowaną pracę napisaną ok. 1915 r. Pomimo tego skromnego dorobku jest on scharakteryzowany tam jako „jeden z najostrzejszych wśród uczniów Weierstrassa” i „matematyk wysokiej rangi”. Teza Stickelbergera i kilka późniejszych artykułów usprawnia i uzupełnia wcześniejsze badania różnych autorów w bezpośredni i elegancki sposób.
Algebra liniowa
Praca Stickelbergera nad klasyfikacją par form dwuliniowych i kwadratowych wypełniła ważne luki w teorii opracowanej wcześniej przez Weierstrassa i Darboux . Wzbogacony współczesną pracą Frobeniusa, oparł teorię elementarnych dzielników na rygorystycznych podstawach. Ważny artykuł Stickelbergera i Frobeniusa z 1878 r. przedstawił pierwsze kompletne omówienie klasyfikacji skończenie generowanych grup abelowych i naszkicował związek z teorią modułów , którą właśnie opracował Dedekind .
Teoria liczb
Trzy wspólne prace z Frobeniusem dotyczą teorii funkcji eliptycznych . Dziś nazwisko Stickelbergera jest najbardziej związane z jego artykułem z 1890 r., W którym ustalono relację Stickelbergera dla cyklotomicznych sum Gaussa . Ta uogólniona wcześniejsza praca Jacobiego i Kummera została później wykorzystana przez Hilberta do sformułowania praw wzajemności w algebraicznych ciałach liczbowych . Relacja Stickelbergera dostarcza również informacji o strukturze grupy klas a pole cyklotomiczne jako moduł nad jego abelową grupą Galois (por. teoria Iwasawy ).
- Lothar Heffter, Ludwig Stickelberger , Jahresbericht der Deutschen Matematische Vereinigung , XLVII (1937), s. 79–86
- Ludwig Stickelberger, Ueber eine Verallgemeinerung der Kreistheilung , Mathematische Annalen 37 (1890), s. 321–367