Zaburzenia energii swobodnej
Zaburzenia energii swobodnej ( FEP ) to metoda oparta na mechanice statystycznej , która jest wykorzystywana w chemii obliczeniowej do obliczania różnic energii swobodnej z dynamiki molekularnej lub symulacji Metropolis Monte Carlo .
Metoda FEP została wprowadzona przez Roberta W. Zwanziga w 1954 r. Zgodnie z metodą zaburzeń energii swobodnej różnicę energii swobodnej przejścia ze stanu A do stanu B uzyskuje się z następującego równania, znanego jako równanie Zwanziga :
gdzie T to temperatura , k B to stała Boltzmanna , a nawiasy kątowe oznaczają średnią z przebiegu symulacji dla stanu A . W praktyce przeprowadza się normalną symulację dla stanu A , ale za każdym razem, gdy akceptowana jest nowa konfiguracja, obliczana jest również energia dla stanu B. Różnica między stanami A i B może dotyczyć typów atomów, w którym to przypadku otrzymane Δ F służy do „mutacji” jednej cząsteczki w drugą lub może to być różnica geometrii, w którym to przypadku uzyskuje się mapę energii swobodnej wzdłuż jednej lub więcej współrzędnych reakcji . Ta mapa energii swobodnej jest również znana jako potencjał siły średniej lub PMF.
Obliczenia zaburzeń energii swobodnej są właściwie zbieżne tylko wtedy, gdy różnica między dwoma stanami jest wystarczająco mała; dlatego zwykle konieczne jest podzielenie zaburzenia na serię mniejszych „okien”, które są obliczane niezależnie. Ponieważ nie ma potrzeby ciągłej komunikacji między symulacją jednego okna a następnym, proces można w prosty sposób zrównoleglić, uruchamiając każde okno na innym procesorze, w tak zwanej konfiguracji „żenująco równoległej ” .
Aplikacja
Obliczenia FEP zostały wykorzystane do badania energetyki wiązania gospodarz-gość, przewidywań pKa , wpływu rozpuszczalnika na reakcje i reakcji enzymatycznych. Inne zastosowania to wirtualne badania przesiewowe ligandów w odkrywaniu leków , a także badania mutagenezy in silico . Do badania reakcji często konieczne jest zastosowanie mechaniki kwantowej (QM) reprezentacji centrum reakcji, ponieważ pola siłowe mechaniki molekularnej (MM) stosowane w symulacjach FEP nie radzą sobie z rozrywaniem wiązań. Metoda hybrydowa, która ma zalety zarówno obliczeń QM, jak i MM, nosi nazwę QM/MM .
Próbkowanie parasolowe to kolejna technika obliczania energii swobodnej, która jest zwykle używana do obliczania zmiany energii swobodnej związanej ze zmianą współrzędnych „pozycji” w przeciwieństwie do współrzędnych „chemicznych”, chociaż próbkowanie parasolowe może być również używane do transformacji chemicznej, gdy współrzędna „chemiczna” jest traktowana jako zmienna dynamiczna (podobnie jak w przypadku metody dynamiki Lambda Konga i Brooksa). Alternatywą dla zaburzeń energii swobodnej do obliczania potencjałów średniej siły w przestrzeni chemicznej jest całkowanie termodynamiczne . Inną alternatywą, która jest prawdopodobnie bardziej wydajna, jest wskaźnika akceptacji Bennetta . Istnieją adaptacje FEP, które próbują przypisać zmiany energii swobodnej do podsekcji struktury chemicznej.
Oprogramowanie
Opracowano kilka pakietów oprogramowania, aby pomóc w wykonywaniu obliczeń FEP. Poniżej znajduje się krótka lista niektórych z najpopularniejszych programów:
- FEP+
- BURSZTYN
- SZEF
- Urok
- Desmond
- GROMACS
- MakroModel
- MOLARIS
- NAMD
- Majstrować
- Q
Zobacz też
- ^ Zwanzig, RWJ Chem. fizyka 1954, 22, 1420-1426. doi : 10.1063/1.1740409
- Bibliografia _ Aqvist, Johan; Gutiérrez-de-Terán, Hugo (2021), Ballante, Flavio (red.), „Obliczenia energii swobodnej dla przewidywania wiązania białka z ligandem” , Interakcje białko-ligand i projektowanie leków , Metody biologii molekularnej , Nowy Jork, NY: Springer Stany Zjednoczone, tom. 2266, s. 203–226, doi : 10.1007/978-1-0716-1209-5_12 , ISBN 978-1-0716-1209-5 , PMID 33759129 , S2CID 226701336 , pobrane 2021-03-30
- ^ Irwin, BWJ, J. Chem. Obliczenia teoretyczne. 2018, 14, 6, 3218-3227. doi : 10.1021/acs.jctc.8b00027
- ^ "FEP+ | Schrödinger" . www.schrodinger.com .
- ^ „Pakiet bursztynowej dynamiki molekularnej” . ambermd.org .
-
^
„Zarchiwizowana kopia” . Zarchiwizowane od oryginału w dniu 2014-12-28 . Źródło 2015-01-18 .
{{ cite web }}
: CS1 maint: zarchiwizowana kopia jako tytuł ( link )