Władimir Korepin
Władimir Korepin | |
---|---|
Urodzić się | 6 lutego 1951 |
Alma Mater | Uniwersytet Państwowy w Sankt Petersburgu |
Znany z |
Model Izergina-Korepina Wyznacznik kwantowy Działanie Yang |
Kariera naukowa | |
Pola | Fizyka teoretyczna , Matematyka |
Instytucje | Uniwersytet Stony Brook |
Doradca doktorski | Ludwik Faddejew |
Znani studenci |
Samson Shatashvilli Fabian Essler Witalij Tarasow |
Vladimir E. Korepin (ur. 1951) jest profesorem w Instytucie Fizyki Teoretycznej CN Yang na Uniwersytecie Stony Brook . Korepin wniósł wkład w badania w kilku dziedzinach matematyki i fizyki.
Wykształcenie
Korepin ukończył studia licencjackie na Uniwersytecie Państwowym w Sankt Petersburgu , uzyskując dyplom z fizyki teoretycznej w 1974 roku. W tym samym roku został zatrudniony w Instytucie Matematycznym Akademii Nauk . Pracował tam do 1989 r., uzyskując stopień doktora w 1977 r. pod kierunkiem Ludwiga Faddeeva . Na tej samej uczelni ukończył studia podoktoranckie. W 1985 roku uzyskał stopień doktora nauk fizycznych w zakresie fizyki matematycznej .
Wkład w fizykę
Korepin wniósł wkład do kilku dziedzin fizyki teoretycznej. Chociaż jest najbardziej znany ze swojego zaangażowania w fizykę materii skondensowanej i fizykę matematyczną , znacząco przyczynił się również do grawitacji kwantowej . W ostatnich latach jego praca koncentrowała się na aspektach fizyki materii skondensowanej istotnych dla informacji kwantowej .
Skondensowana materia
Wśród jego wkładu w fizykę materii skondensowanej wymieniamy jego badania nad niskowymiarowymi gazami kwantowymi. W szczególności model 1D Hubbarda silnie skorelowanych fermionów oraz 1D gaz Bosego z interakcjami potencjałów delta .
W 1979 Korepin przedstawił rozwiązanie masywnego modelu Thirringa w jednej przestrzeni i jednym wymiarze czasowym, używając ansatz Bethe . W tej pracy przedstawił dokładne obliczenia widma masowego i macierzy rozpraszania .
Studiował solitony w modelu sinus-Gordon . Wyznaczał ich masę i macierz rozpraszania, zarówno semiklasycznie, jak iz poprawkami do jednej pętli.
Wraz z Anatolijem Izerginem odkrył model 19 wierzchołków (czasami nazywany modelem Izergina-Korepina).
W 1993 roku wraz z AR Item, Izerginem i NA Slavnovem obliczył zależne od przestrzeni, czasu i temperatury funkcje korelacji w łańcuchu spinowym XX. Wykładniczy rozkład funkcji korelacji w przestrzeni i czasie został obliczony jawnie.
Grawitacja kwantowa
W tej dziedzinie Korepin pracował nad anulowaniem nieskończoności ultrafioletowych w jednej pętli grawitacji masy powłoki .
Wkład w matematykę
W 1982 roku Korepin wprowadził warunki brzegowe ściany domeny dla modelu sześciu wierzchołków , opublikowanego w Communications in Mathematical Physics . Wynik odgrywa rolę w różnych dziedzinach matematyki, takich jak kombinatoryka algebraiczna , macierze znaków naprzemiennych , układanie płytek domina , diagramy Younga i podziały płaszczyzn . W tym samym artykule wyznacznik wzór został udowodniony dla kwadratu normy funkcji falowej Bethe ansatz. Można to przedstawić jako wyznacznik zlinearyzowanego układu równań Bethe'go. Można to również przedstawić jako wyznacznik macierzowy drugich pochodnych działania Yang .
Tak zwany „wyznacznik kwantowy” został odkryty w 1981 roku przez AG Izergina i VE Korepina. Jest to centrum algebry Yanga-Baxtera .
Badanie równań różniczkowych dla kwantowych funkcji korelacji doprowadziło do odkrycia specjalnej klasy operatorów całkowych Fredholma . Teraz są one określane jako całkowicie całkowalne operatory całkowe. Mają wiele zastosowań nie tylko w modelach kwantowo dokładnie rozwiązywalnych , ale także w macierzach losowych i kombinatoryce algebraicznej .
Wkład w informacje kwantowe i obliczenia kwantowe
Vladimir Korepin przedstawił wyniki oceny entropii splątania różnych modeli dynamicznych, takich jak oddziałujące spiny, gazy Bosego i model Hubbarda . Rozważał modele z unikalnymi stanami podstawowymi , tak aby entropia całego stanu podstawowego wynosiła zero. Stan podstawowy jest podzielony na dwie wydzielone przestrzennie części: bryłę i otoczenie. Obliczył entropię bloku jako funkcję jego wielkości i innych parametrów fizycznych. W serii artykułów Korepin jako pierwszy obliczył analityczny wzór na entropię splątania modeli XX (izotropowych) i XY Heisenberga . Do obliczeń wykorzystał determinanty Toeplitza i wzór Fishera -Hartwiga. W stanach Valence-Bond-Solid (który jest stanem podstawowym schematu Afflecka-Kennedy'ego- Lieba -Tasaki model oddziałujących spinów), Korepin oszacował entropię splątania i zbadał macierz o zredukowanej gęstości . Pracował także nad algorytmami wyszukiwania kwantowego z Lovem Groverem . Wiele jego publikacji na temat splątania i algorytmów kwantowych można znaleźć na stronie ArXiv .
W maju 2003 Korepin pomógł zorganizować konferencję na temat obliczeń kwantowych i odwracalnych w Stony Brook. Kolejna konferencja odbyła się w dniach 15-18 listopada 2010 r., zatytułowana Simons Conference on New Trends in Quantum Computation .
Książki
- Essler, FHL; Frahm, H., Goehmann, F., Kluemper, A. i Korepin, VE, Jednowymiarowy model Hubbarda. Cambridge University Press (2005).
- VE Korepin, NM Bogoliubov i AG Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press (1993).
- Dokładnie rozwiązywalne modele silnie skorelowanych elektronów. Tom przedruku, wyd. FHL Essler i VE Korepin, World Scientific (1994).
Korona
- Indeks H Korepina wynosi 68 z ponad 20431 cytowaniami.
- W 1996 Korepin został wybrany członkiem Amerykańskiego Towarzystwa Fizycznego.
- Członek Międzynarodowego Stowarzyszenia Fizyki Matematycznej i Instytutu Fizyki.
- Redaktor Review in Mathematical Physics , International Journal of Modern Physics oraz Theoretical and Mathematical Physics .
- Jego 60. urodziny obchodził w 2011 roku Instytut Studiów Zaawansowanych w Singapurze.