D 6 polytope

Projekcje prostopadłe w płaszczyźnie D 6 Coxeter
6-demicube t0 D6.svg
6-sześcian
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-cube t5 B5.svg
6-ortopleks
CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png

geometrii 6-wymiarowej istnieje 47 jednolitych polytopów o symetrii D 6 , z których 16 jest unikalnych, a 31 jest wspólnych z symetrią B 6 . Istnieją dwie regularne formy, 6-ortopleks i 6-półsześcian z odpowiednio 12 i 32 wierzchołkami.

Można je wizualizować jako symetryczne projekcje ortograficzne w płaszczyznach Coxetera grupy D6 Coxetera i innych podgrup.

Wykresy

Symetryczne rzuty prostokątne tych 16 polytopów można wykonać w płaszczyznach D 6 , D 5 , D 4 , D 3 , A 5 , A 3 , Coxeter . A k ma symetrię [k+1] , D k ma symetrię [2(k-1)] . B 6 jest również uwzględnione, chociaż w tych polytopach istnieje tylko połowa jego [12] symetrii.

Każdy z tych 16 polytopów jest pokazany na tych 7 płaszczyznach symetrii, z narysowanymi wierzchołkami i krawędziami oraz wierzchołkami pokolorowanymi według liczby nakładających się wierzchołków w każdej pozycji rzutowej.

# Wykresy płaszczyzny Coxetera
Diagram Coxetera Nazwy

B6 [ 12/2]

D 6 [10]

D 5 [8]

D 4 [6]

re 3 [4]

5 [ 6]
3 [4 ]
1 6-demicube t0 B6.svg 6-demicube t0 D6.svg 6-demicube t0 D5.svg 6-demicube t0 D4.svg 6-demicube t0 D3.svg 6-demicube t0 A5.svg 6-demicube t0 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

= 6-półsześcian Hemihexeract (hax)
2 6-demicube t01 B6.svg 6-demicube t01 D6.svg 6-demicube t01 D5.svg 6-demicube t01 D4.svg 6-demicube t01 D3.svg 6-demicube t01 A5.svg 6-demicube t01 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

= kantyczny 6-sześcian Ścięty hemihexeract ( thax )
3 6-demicube t02 B6.svg 6-demicube t02 D6.svg 6-demicube t02 D5.svg 6-demicube t02 D4.svg 6-demicube t02 D3.svg 6-demicube t02 A5.svg 6-demicube t02 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

= Runcic 6-cube Mały rombowy hemihexeract (sirhax)
4 6-demicube t03 B6.svg 6-demicube t03 D6.svg 6-demicube t03 D5.svg 6-demicube t03 D4.svg 6-demicube t03 D3.svg 6-demicube t03 A5.svg 6-demicube t03 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png

= steryczny 6-sześcian Mały pryzmat hemihekserakt (sofaks)
5 6-demicube t04 B6.svg 6-demicube t04 D6.svg 6-demicube t04 D5.svg 6-demicube t04 D4.svg 6-demicube t04 D3.svg 6-demicube t04 A5.svg 6-demicube t04 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png

= pentic 6-cube Mały komórkowy demihekserakt ( sochax )
6 6-demicube t012 B6.svg 6-demicube t012 D6.svg 6-demicube t012 D5.svg 6-demicube t012 D4.svg 6-demicube t012 D3.svg 6-demicube t012 A5.svg 6-demicube t012 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

= runcicantic 6-cube Wielki rombowy hemihexeract ( girhax )
7 6-demicube t013 B6.svg 6-demicube t013 D6.svg 6-demicube t013 D5.svg 6-demicube t013 D4.svg 6-demicube t013 D3.svg 6-demicube t013 A5.svg 6-demicube t013 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png

= stericantic 6-sześcian prismatościęty hemihexeract (pithax)
8 6-demicube t023 B6.svg 6-demicube t023 D6.svg 6-demicube t023 D5.svg 6-demicube t023 D4.svg 6-demicube t023 D3.svg 6-demicube t023 A5.svg 6-demicube t023 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png

= steriruncic 6-cube Prismatorhombated hemihexeract ( prohax )
9 6-demicube t014 B6.svg 6-demicube t014 D6.svg 6-demicube t014 D5.svg 6-demicube t014 D4.svg 6-demicube t014 D3.svg 6-demicube t014 A5.svg 6-demicube t014 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png

= Stericantic 6-sześcian Cellitruncated hemihexeract (cathix)
10 6-demicube t024 B6.svg 6-demicube t024 D6.svg 6-demicube t024 D5.svg 6-demicube t024 D4.svg 6-demicube t024 D3.svg 6-demicube t024 A5.svg 6-demicube t024 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png

= Pentiruncic 6-sześcian Cellirhombated hemihexeract (crohax)
11 6-demicube t034 B6.svg 6-demicube t034 D6.svg 6-demicube t034 D5.svg 6-demicube t034 D4.svg 6-demicube t034 D3.svg 6-demicube t034 A5.svg 6-demicube t034 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png

= Pentysteryczny 6-sześcianowy hemihexeract z pryzmatem komórkowym (cophix)
12 6-demicube t0123 B6.svg 6-demicube t0123 D6.svg 6-demicube t0123 D5.svg 6-demicube t0123 D4.svg 6-demicube t0123 D3.svg 6-demicube t0123 A5.svg 6-demicube t0123 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png

= Steriruncicantic 6-sześcian Wielki pryzmatyczny hemihexeract (gophax)
13 6-demicube t0124 B6.svg 6-demicube t0124 D6.svg 6-demicube t0124 D5.svg 6-demicube t0124 D4.svg 6-demicube t0124 D3.svg 6-demicube t0124 A5.svg 6-demicube t0124 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png

= Pentiruncicantic 6-sześcian Celligreatorhombated hemihexeract (cagrohax)
14 6-demicube t0134 B6.svg 6-demicube t0134 D6.svg 6-demicube t0134 D5.svg 6-demicube t0134 D4.svg 6-demicube t0134 D3.svg 6-demicube t0134 A5.svg 6-demicube t0134 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png

= Pentisstericantic 6-cube Celliprismato ścięty hemihexeract (capthix)
15 6-demicube t0234 B6.svg 6-demicube t0234 D6.svg 6-demicube t0234 D5.svg 6-demicube t0234 D4.svg 6-demicube t0234 D3.svg 6-demicube t0234 A5.svg 6-demicube t0234 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png

= Pentisteriruncic 6-sześcian Celliprismatorhombated hemihexeract (caprohax)
16 6-demicube t01234 B6.svg 6-demicube t01234 D6.svg 6-demicube t01234 D5.svg 6-demicube t01234 D4.svg 6-demicube t01234 D3.svg 6-demicube t01234 A5.svg 6-demicube t01234 A3.svg CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png

= Pentisteriruncicantic 6-sześcian Wielki hemihekserakt komórkowy (gochax)
  • HSM Coxeter :
    • HSM Coxeter, Regular Polytopes , wydanie 3, Dover, Nowy Jork, 1973
  •   Kaleidoscopes: Selected Writings of HSM Coxeter , pod redakcją F. Arthura Sherka, Petera McMullena, Anthony'ego C. Thompsona, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
    • (Papier 22) HSM Coxeter, Regularne i półregularne Polytopes I , [Math. Zeit. 46 (1940) 380-407, MR 2,10]
    • (Papier 23) HSM Coxeter, Regularne i półregularne Polytopes II , [Math. Zeit. 188 (1985) 559-591]
    • (Papier 24) HSM Coxeter, Regularne i półregularne Polytopy III , [Math. Zeit. 200 (1988) 3-45]
  • NW Johnson : Theory of Uniform Polytopes and Honeycombs , Ph.D. Rozprawa, University of Toronto, 1966
  • Klitzing, Richard. „Jednolite polytopy 6D (polipeta)” .

Notatki

Rodzina rz _ B n I 2 (p) / D n mi 6 / mi 7 / mi 8 / fa 4 / sol 2 H n
Regularny wielokąt Trójkąt Kwadrat p-gon Sześciokąt Pięciokąt
Jednolity wielościan Czworościan Ośmiościan Sześcian Demisześcian Dwunastościan Dwudziestościan
Jednolity polichoron pentachoron 16-ogniwowy Tesserakt Demitesseract 24-ogniwowy 120-ogniwowy 600-ogniwowy
Jednolity 5-politop 5-jednostronny 5-ortopleks 5-sześcian 5-sześcian
Jednolity 6-politop 6-jednostronny 6-ortopleks 6-sześcian 6-sześcian 1 22 2 21
Jednolity 7-politop 7-jednostronny 7-ortopleks 7-sześcian 7-sześcian 1 32 2 31 3 21
Jednolity 8-politop 8-jednostronny 8-ortopleks 8-sześcian 8-sześcian 1 42 2 41 4 21
Jednolity 9-politop 9-jednostronny 9-ortopleks 9-sześcian 9-sześcian
Jednolity 10-politop 10-jednostronny 10-ortopleks 10-sześcian 10-sześcian
Jednolity n - polytope n - simpleks n - ortopleks n - sześcian n - półsześcian 1 k2 2 k1 k 21 n - pięciokątny politop
Tematy: Rodziny polytopów Regularne polytopy Lista regularnych polytopów i związków