PSMB2
PSMB2 | |||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||||||||||||||||||||||||||||||||||||
Identyfikatory | |||||||||||||||||||||||||||||||||||||||||||||||
, HC7-I, podjednostka proteasomu beta 2, podjednostka proteasomu 20S beta 2 | |||||||||||||||||||||||||||||||||||||||||||||||
Identyfikatory zewnętrzne | |||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||
Wikidane | |||||||||||||||||||||||||||||||||||||||||||||||
|
Podjednostka proteasomu beta typu 2, znana również jako podjednostka proteasomu 20S beta-4 (w oparciu o nomenklaturę systematyczną) jest białkiem , które u ludzi jest kodowane przez gen PSMB2 . Białko to jest jedną z 17 podstawowych podjednostek (podjednostki alfa 1–7, konstytutywne podjednostki beta 1–7 i podjednostki indukowalne, w tym beta1i, beta2i, beta5i), które przyczyniają się do całkowitego złożenia kompleksu proteasomu 20S . W szczególności podjednostka beta proteasomu typu 2 wraz z innymi podjednostkami beta składa się w dwa pierścienie heptameryczne, a następnie komorę proteolityczną do degradacji substratu. Proteasom eukariotyczny rozpoznawał białka degradowalne, w tym białka uszkodzone, do celów kontroli jakości białek lub kluczowe regulacyjne składniki białkowe do dynamicznych procesów biologicznych. Istotną funkcją zmodyfikowanego proteasomu, immunoproteasomu, jest przetwarzanie peptydów MHC klasy I.
Struktura
Gen
Gen PSMB2 koduje członka rodziny proteasomów typu B, znanej również jako rodzina T1B, czyli podjednostkę beta rdzenia 20S. Gen ma 7 eksonów i znajduje się w prążku chromosomu 1p34.2.
Białko
Podjednostka beta ludzkiego proteasomu białka typu 2 ma wielkość 23 kDa i składa się z 201 aminokwasów. Obliczony teoretyczny pI tego białka wynosi 6,52.
Złożony montaż
Proteasom jest multikatalitycznym kompleksem proteinazowym o wysoce uporządkowanej strukturze rdzenia 20S . Ta struktura rdzenia w kształcie beczki składa się z 4 osiowo ułożonych pierścieni z 28 nieidentycznych podjednostek: każdy z dwóch pierścieni końcowych składa się z 7 podjednostek alfa, a każdy z dwóch pierścieni centralnych składa się z 7 podjednostek beta. Każda z trzech podjednostek beta (beta1, beta2 i beta5) zawiera aktywne miejsce proteolityczne i ma różne preferencje dotyczące substratów. Proteasomy są rozmieszczone w komórkach eukariotycznych w wysokim stężeniu i rozszczepiają peptydy w procesie zależnym od ATP/ubikwityny na szlaku nielizosomalnym.
Funkcjonować
Funkcje białka są wspierane przez jego trzeciorzędową strukturę i interakcję z partnerami stowarzyszonymi. Jako jedna z 28 podjednostek proteasomu 20S, podjednostka beta proteasomu typu 2 przyczynia się do tworzenia środowiska proteolitycznego do degradacji substratu. Dowody na struktury krystaliczne wyizolowanego kompleksu proteasomu 20S pokazują, że dwa pierścienie podjednostek beta tworzą komorę proteolityczną i utrzymują wszystkie swoje aktywne miejsca proteolizy w komorze. Jednocześnie pierścienie podjednostek alfa tworzą wejście dla substratów wchodzących do komory proteolitycznej. W inaktywowanym kompleksie proteasomu 20S brama do wewnętrznej komory proteolitycznej jest strzeżona przez N-końcowe ogony określonej podjednostki alfa. Ta unikalna konstrukcja struktury zapobiega przypadkowemu zetknięciu się aktywnych miejsc proteolitycznych z substratem białkowym, co sprawia, że degradacja białka jest procesem dobrze regulowanym. Sam kompleks proteasomu 20S jest zwykle funkcjonalnie nieaktywny. Zdolność proteolityczna cząstki rdzeniowej 20S (CP) może zostać aktywowana, gdy CP połączy się z jedną lub dwiema cząstkami regulatorowymi (RP) po jednej lub obu stronach pierścieni alfa. Te cząstki regulatorowe obejmują kompleksy proteasomu 19S, kompleks proteasomu 11S itp. Po asocjacji CP-RP potwierdzenie niektórych podjednostek alfa ulegnie zmianie iw konsekwencji spowoduje otwarcie bramy wejściowej substratu. Oprócz RP, proteasomy 20S można również skutecznie aktywować za pomocą innych łagodnych zabiegów chemicznych, takich jak ekspozycja na niskie poziomy dodecylosiarczanu sodu (SDS) lub NP-14.
Znaczenie kliniczne
Proteasom i jego podjednostki mają znaczenie kliniczne z co najmniej dwóch powodów: (1) upośledzony zespół złożony lub dysfunkcyjny proteasom mogą być związane z podstawową patofizjologią określonych chorób oraz (2) mogą być wykorzystywane jako cele leków do celów terapeutycznych interwencje. Ostatnio podjęto więcej wysiłków w celu rozważenia proteasomu w celu opracowania nowych markerów i strategii diagnostycznych. Lepsze i kompleksowe zrozumienie patofizjologii proteasomu powinno w przyszłości znaleźć zastosowanie kliniczne.
Proteasomy stanowią kluczowy składnik systemu ubikwityna-proteasom (UPS) i odpowiadającej mu komórkowej kontroli jakości białek (PQC). Ubikwitynacja białek , a następnie proteoliza i degradacja przez proteasom są ważnymi mechanizmami regulującymi cykl komórkowy , wzrost i różnicowanie komórek , transkrypcję genów, transdukcję sygnału i apoptozę . Następnie upośledzony montaż i funkcja kompleksu proteasomu prowadzi do zmniejszonej aktywności proteolitycznej i akumulacji uszkodzonych lub nieprawidłowo sfałdowanych rodzajów białek. Taka akumulacja białek może przyczyniać się do patogenezy i cech fenotypowych w chorobach neurodegeneracyjnych, chorobach sercowo-naczyniowych, odpowiedziach zapalnych i chorobach autoimmunologicznych oraz ogólnoustrojowych odpowiedziach na uszkodzenia DNA prowadzące do nowotworów złośliwych .
Kilka badań eksperymentalnych i klinicznych wykazało, że aberracje i deregulacja UPS przyczyniają się do patogenezy kilku zaburzeń neurodegeneracyjnych i miodegeneracyjnych, w tym choroby Alzheimera , choroby Parkinsona i choroby Picka , stwardnienia zanikowego bocznego (ALS), choroby Huntingtona , choroby Creutzfeldta-Jakoba , i choroby neuronu ruchowego , choroby poliglutaminowe (PolyQ), dystrofie mięśniowe oraz kilka rzadkich postaci chorób neurodegeneracyjnych związanych z demencją . Jako część układu ubikwityna-proteasom (UPS), proteasom utrzymuje homeostazę białek serca, a tym samym odgrywa znaczącą rolę w uszkodzeniu niedokrwiennym serca , przeroście komór i niewydolności serca . Ponadto gromadzone są dowody na to, że UPS odgrywa zasadniczą rolę w transformacji złośliwej. Proteoliza UPS odgrywa główną rolę w odpowiedziach komórek nowotworowych na sygnały stymulujące, które są krytyczne dla rozwoju raka. Odpowiednio, ekspresja genów przez degradację czynników transkrypcyjnych , takich jak p53 , c-jun , c-Fos , NF-κB , c-Myc , HIF-1α, MATα2, STAT3 , białka wiążące pierwiastki sterolowe i receptory androgenowe wszystkie są kontrolowane przez UPS, a tym samym zaangażowane w rozwój różnych nowotworów złośliwych. Ponadto UPS reguluje degradację produktów genów supresorowych nowotworów, takich jak gruczolakowata polipowatość jelita grubego ( APC ) w raku jelita grubego, siatkówczaku (Rb). i supresor guza von Hippel-Lindau (VHL), a także szereg protoonkogenów ( Raf , Myc , Myb , Rel , Src , Mos , ABL ). UPS bierze również udział w regulacji reakcji zapalnych. Ta aktywność jest zwykle przypisywana roli proteasomów w aktywacji NF-κB, który dodatkowo reguluje ekspresję cytokin prozapalnych , takich jak TNF-α , IL-β, IL-8 , cząsteczki adhezyjne ( ICAM-1 , VCAM-1 , P-selektyna ) oraz prostaglandyny i tlenek azotu (NIE). Dodatkowo UPS odgrywa również rolę w odpowiedziach zapalnych jako regulatory proliferacji leukocytów, głównie poprzez proteolizę cyklin i degradację CDK . Wreszcie, pacjenci z chorobami autoimmunologicznymi z SLE , zespołem Sjögrena i reumatoidalnym zapaleniem stawów (RZS) wykazują głównie krążące proteasomy, które można zastosować jako biomarkery kliniczne.
Wykazano, że podjednostka proteasomu beta typu 2, znana również jako podjednostka proteasomu 20S beta-4, białko kodowane przez gen PSMB2 u ludzi jest stabilne w komórkach pęcherzyków oskrzelowych (BAL) płuc w pewnych stanach klinicznych, takich jak śródmiąższowa choroba płuc i sarkoidoza (równolegle z RPL32). PSMB2 jest zatem odpowiednim genem referencyjnym do normalizacji w komórkach BAL w sarkoidozie i innych śródmiąższowych chorobach płuc podczas badań klinicznych z zastosowaniem ilościowej reakcji łańcuchowej polimerazy z odwrotną transkryptazą ( qRT-PCR) .
Dalsza lektura
- Coux O, Tanaka K, Goldberg AL (1996). „Struktura i funkcje proteasomów 20S i 26S”. Roczny przegląd biochemii . 65 : 801–47. doi : 10.1146/annurev.bi.65.070196.004101 . PMID 8811196 .
- Goff SP (sierpień 2003). „Śmierć przez dezaminację: nowy system restrykcji gospodarza dla HIV-1” . komórka . 114 (3): 281–3. doi : 10.1016/S0092-8674(03)00602-0 . PMID 12914693 . S2CID 16340355 .
- Rasmussen HH, van Damme J, Puype M, Gesser B, Celis JE, Vandekerckhove J (grudzień 1992). „Mikrosekwencje 145 białek zarejestrowanych w dwuwymiarowej bazie danych białek żelowych normalnych ludzkich keratynocytów naskórka”. Elektroforeza . 13 (12): 960–9. doi : 10.1002/elps.11501301199 . PMID 1286667 . S2CID 41855774 .
- Dawson SJ, Biały LA (maj 1992). „Leczenie zapalenia wsierdzia wywołanego przez Haemophilus aphrophilus cyprofloksacyną”. Dziennik infekcji . 24 (3): 317–20. doi : 10.1016/S0163-4453(05)80037-4 . PMID 1602151 .
- Kristensen P, Johnsen AH, Uerkvitz W, Tanaka K, Hendil KB (grudzień 1994). „Podjednostki ludzkiego proteasomu z dwuwymiarowych żeli zidentyfikowane przez częściowe sekwencjonowanie”. Komunikaty dotyczące badań biochemicznych i biofizycznych . 205 (3): 1785–9. doi : 10.1006/bbrc.1994.2876 . PMID 7811265 .
- Seeger M, Ferrell K, Frank R, Dubiel W (marzec 1997). „HIV-1 tat hamuje proteasom 20 S i jego aktywację za pośrednictwem regulatora 11 S” . Journal of Biological Chemistry . 272 (13): 8145–8. doi : 10.1074/jbc.272.13.8145 . PMID 9079628 .
- McCusker D, Jones T, Sheer D, Trowsdale J (październik 1997). „Związki genetyczne genów kodujących podjednostki beta ludzkiego proteasomu i kompleks proteasomu PA28”. Genomika . 45 (2): 362–7. doi : 10.1006/geno.1997.4948 . PMID 9344661 .
- Madani N, Kabat D (grudzień 1998). „Endogenny inhibitor ludzkiego wirusa niedoboru odporności w ludzkich limfocytach zostaje pokonany przez wirusowe białko Vif” . Dziennik wirusologii . 72 (12): 10251–5. doi : 10.1128/JVI.72.12.10251-10255.1998 . PMC 110608 . PMID 9811770 .
- Simon JH, Gaddis NC, Fouchier RA, Malim MH (grudzień 1998). „Dowody na nowo odkryty komórkowy fenotyp anty-HIV-1”. Medycyna natury . 4 (12): 1397–400. doi : 10.1038/3987 . PMID 9846577 . S2CID 25235070 .
- Elenich LA, Nandi D, Kent AE, McCluskey TS, Cruz M, Iyer MN, Woodward EC, Conn CW, Ochoa AL, Ginsburg DB, Monaco JJ (wrzesień 1999). „Pełna podstawowa struktura mysich proteasomów 20S”. Immunogenetyka . 49 (10): 835–42. doi : 10.1007/s002510050562 . PMID 10436176 . S2CID 20977116 .
- Mulder LC, Muesing MA (wrzesień 2000). „Degradacja integrazy HIV-1 przez szlak reguły N-końca” . Journal of Biological Chemistry . 275 (38): 29749–53. doi : 10.1074/jbc.M004670200 . PMID 10893419 .
- Feng Y, Longo DL, Ferris DK (styczeń 2001). „Kinaza podobna do Polo oddziałuje z proteasomami i reguluje ich aktywność”. Wzrost i różnicowanie komórek . 12 (1): 29–37. PMID 11205743 .
- Sheehy AM, Gaddis NC, Choi JD, Malim MH (sierpień 2002). „Izolacja ludzkiego genu, który hamuje zakażenie HIV-1 i jest tłumiony przez wirusowe białko Vif”. Natura . 418 (6898): 646–50. Bibcode : 2002Natur.418..646S . doi : 10.1038/natura00939 . PMID 12167863 . S2CID 4403228 .
- Huang X, Seifert U, Salzmann U, Henklein P, Preissner R, Henke W, Sijts AJ, Kloetzel PM, Dubiel W (listopad 2002). „Miejsce RTP wspólne dla białka Tat HIV-1 i podjednostki alfa regulatora 11S ma kluczowe znaczenie dla ich wpływu na funkcje proteasomu, w tym przetwarzanie antygenu”. Dziennik biologii molekularnej . 323 (4): 771–82. doi : 10.1016/S0022-2836(02)00998-1 . PMID 12419264 .
- De M, Jayarapu K, Elenich L, Monaco JJ, Colbert RA, Griffin TA (luty 2003). „Propeptydy podjednostki beta 2 wpływają na współpracujący zespół proteasomu” . Journal of Biological Chemistry . 278 (8): 6153–9. doi : 10.1074/jbc.M209292200 . PMID 12456675 .
- Gaddis NC, Chertova E, Sheehy AM, Henderson LE, Malim MH (maj 2003). „Kompleksowe badanie defektu molekularnego w wirionach ludzkiego wirusa niedoboru odporności typu 1 z niedoborem vif” . Dziennik wirusologii . 77 (10): 5810–20. doi : 10.1128/JVI.77.10.5810-5820.2003 . PMC 154025 . PMID 12719574 .
- Lecossier D, Bouchonnet F, Clavel F, Hance AJ (maj 2003). „Hipermutacja DNA HIV-1 przy braku białka Vif”. nauka . 300 (5622): 1112. doi : 10.1126/science.1083338 . PMID 12750511 . S2CID 20591673 .